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Abstract. The behavior of charge and spin persistent currents in an integrable lattice ring of strongly
correlated electrons with a magnetic impurity is exactly studied. Our results manifest that the oscillations
of charge and spin persistent currents are similar to the ones, earlier obtained for integrable continuum
models with a magnetic impurity. The difference is due to two (instead of one) Fermi velocities of low-
lying excitations. The form of oscillations in the ground state is “saw-tooth”-like, generic for any multi-
particle coherent one-dimensional models. The integrable magnetic impurity introduces net charge and spin
chiralities in the generic integrable lattice system, which determine the initial phase shifts of charge and
spin persistent currents. We show that the magnitude of the charge persistent current in the generic Kondo
situation does not depend on the parameters of the magnetic impurity, unlike the (magneto)resistivity of
transport currents.

PACS. 71.10.Fd Lattice fermion models (Hubbard model, etc.) – 73.23.Ra Persistent currents –
75.20.Hr Local moment in compounds and alloys; Kondo effect, valence fluctuations, heavy fermions

1 Introduction

The Kondo problem [1] describes the effect of a local ex-
change interaction between the spin of a magnetic impu-
rity and itinerant electrons. For a free electron host spins
of conduction electrons screen the spin (S = 1

2 ) of the
magnetic impurity at low energies, while for large ener-
gies the impurity spin remains unscreened. For S > 1

2 the
impurity spin is undercompensated to S − 1

2 at low ener-
gies [2,3]. The crossover energy is referred to as the Kondo
temperature. Local moment formation and the screening
of the spin is realized within the Anderson’s impurity
model (see, e.g., [3,4]), where localized electrons of ionic
orbitals are hybridized with conduction states. Due to the
hybridization the valence of the impurity can range from
close to zero (the non-magnetic situation), through the
mixed-valence regime to the magnetic or Kondo case (the
valence is essentially 1).

Recent several years quantum dots offer the possibil-
ity to study the Kondo effect at the level of an artificial
magnetic impurity [5,6] in a one-dimensional (1D) ring.
Unlike the usual impurities in metals [3,4] the study of
quantum dots permitted to tune different parameters [7].
Also recently there has been an increased interest in prop-
erties of magnetic impurities in correlated electron hosts,
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where interactions between itinerant electrons affect the
behavior of the impurity, see, e.g., [8,9]. Besides purely
academic interest, the study of magnetic impurities in cor-
related electron hosts can be related to experiments on
1D arrays of quantum dots (quantum corrals) [10], and
ensembles of magnetic adatoms on metallic surfaces [11].
A number of publications considered persistent currents
in quantum rings with magnetic impurities or quantum
dots [12–18]. Persistent currents in electron rings are con-
nected with the Aharonov-Bohm-Casher effect [19]. The
charge persistent current is the thermodynamic charac-
teristic of a ring [20]. It is connected with the Aharonov-
Bohm phase shift, which appears when charges move along
a loop, pierced by a magnetic flux [19]. Then an external
magnetic flux yields nonzero momentum of charges. The
charge persistent current is related to the total orbital mo-
ment of all charges in the ring [20,21]; it is the derivative
of the energy of a system in equilibrium with respect to
the applied magnetic flux [20,21]. One has to distinguish
between persistent currents and transport currents. Re-
call, transport currents are kinetic characteristics of any
system [22], characterized by the resistivity and related to
it transition amplitude. In the linear response theory the
resistivity is the coefficient connecting the value of the cur-
rent with the value of an applied electric field [22]. Hence,
the transport current is the consequence of the difference
in potentials applied to the source and drain cf. Figure 1a.
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Fig. 1. Different geometries for the manifestation of the
Aharonov-Bohm effect of an external magnetic flux Φ in a
metallic ring: (a) the transport current geometry with the
source (S) and drain (D); (b) the persistent current geometry.

Contrary, the charge persistent current can exist without
any applied external electric field: It does not need any
source and drain, cf. Figure 1b. When the ring between
the source and drain is pierced by an external magnetic
flux in the geometry of Figure 1a, the transport current
is also affected by that flux. Hence, the resistivity of the
transport current also becomes flux-dependent. However,
such a transport current is not exactly equal to the charge
persistent current. This difference in the basic natures of
transport and persistent currents produces the main dif-
ference in the answers, when one considers the effect of a
magnetic (Kondo) impurity in a metallic ring, pierced by
a flux.

There are two possibilities of coupling of the quantum
dot to the ring: embedding of the dot in the ring and
side-coupling of the dot. In a recent publication [17] (see,
also [23]) it was stated that the geometry of [12,15] per-
tains to the side-coupled impurity (quantum dot) rather
than to embedded one, and that the linearization of the
spectrum of host electrons together with the study of only
chiral electrons plays the essential role in the properties of
charge persistent currents (cf. also [18]). The goal of the
present study is to find Bethe ansatz results for charge
and spin persistent currents in an electron lattice ring
with a a magnetic impurity and to compare obtained re-
sults with [12–18]. The question to be answered is: What
are the consequences of the scaling approximations used
in [12–16]? Whether those approximations produce fea-
tures in the behavior of persistent currents, qualitatively
different from the lattice counterpart as [17,18,23] state?
To answer this question a convenient choice of the 1D lat-
tice host is the t−J model (Bethe ansatz-solvable at the
supersymmetric point, J = 2t [24]). An impurity in such a
model reveals non-magnetic, mixed-valence and magnetic
(Kondo-like) regimes, depending on the parameters of the
model, similar to the Anderson impurity model. Low-lying
excitations of that model are also similar to the ones of
the Anderson impurity model cf. [3,24]. Our study also
has to clarify another important issue. There are two inde-
pendent well-known Bethe ansatz solutions to the Kondo
problem: [25] and [26]. These solutions, being different in
some details, produce correct answers for thermodynamic
characteristics of the magnetic impurity. However, those
details produce the difference in the behavior of finite-size
corrections (which namely determine persistent currents
in metallic systems) [21]. One of those details is the phase
factor for the Bethe ansatz equations which govern the
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Fig. 2. (a) A side-coupled impurity; (b) an integrable impurity
in a ring; (c) an integrable impurity in the bulk of an an open
chain; (d) an integrable impurity at the edge of an open chain.

behavior of charge degrees of freedom in [25] and the ab-
sence of such a phase in [26]. The presence or absence
of those phase factors are determined by the particular
chosen schemes of taking the scaling limit in these two
approaches. In [12] we used the scaling scheme introduced
in [25]. This scheme determined the onset of the initial
phase shift for charge persistent currents, caused by the
Kondo impurity. On the other hand, in [15] we studied
persistent currents for a system with multi-channel Kondo
impurities, and used the scaling scheme introduced in [26].
Therefore there was no initial phase shift for charge persis-
tent currents (even for the case of the number of channels
being equal to 1) in [15]. Hence, the other goal of the
present paper is to clarify the situation for initial phase
shifts of persistent currents for Bethe ansatz solvable lat-
tice rings with magnetic impurities.

2 Bethe ansatz solution

References [17,23] claimed that the Bethe ansatz ap-
proaches of [12–15,18] considered side-coupled quantum
dots, see Figure 2a. The Bethe ansatz method can be used
only for systems with periodic or open boundary condi-
tions. The Bethe ansatz method is properly justified for
discrete coordinates of particles because of its main prop-
erty: Any multi-particle scattering process is considered as
a sequence of pair scattering processes between particles
in the Bethe ansatz scheme [27]. Thus, when studying con-
tinuous limit, one has to use some scaling approximation
(regularization procedure) from the lattice counterpart.
Therefore the consideration of the continuous scaling limit
for the solution of the Kondo problem has some freedom
in the determination of the phase shift. Impurities can be
included into the lattice Bethe ansatz scheme either as
shown in Figures 2b and c for the impurity in the bulk of
a ring or an open chain, i.e. the impurity is connected with
two neighboring sites of the host, or connected with only
one neighboring site only at the edge of an open chain,
as shown in Figure 2d. This is the direct consequence of
the fact that impurities can be introduced into the Bethe
ansatz monodromies either as special scattering matrices
(this way implies no reflection off such an impurity at all)
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or as boundary reflectors, which can be applied only to the
edges of an open chain. Pay attention that we distinguish
the reflection and backward scattering (they coincide only
when one considers left- and right-movers with dispersion
laws, linearized about Fermi points, and neglects states
in the “bulk” of the Fermi sea). By the backscattering
we mean the transfer from one Fermi point to another.
Such processes are present in any lattice Bethe ansatz-
solvable theories, like the Heisenberg spin- 1

2 chain or Hub-
bard chain [27], but there is no reflection for those models
except of at free edges of open chains. Scattering matri-
ces of impurities have to satisfy Yang-Baxter relations [27]
with scattering matrices of the host, to preserve the inte-
grability. On the other hand, reflectors are described by
reflection matrices which satisfy reflection equations [28].
However, for any system with open boundary conditions
persistent currents are obviously zero. Hence, the only
possibility to study persistent currents in Bethe ansatz-
solvable models with impurities is to consider impurities,
which produce only scattering phases, but not reflections.
In papers [12–16], devoted to the influence of magnetic and
hybridization impurities on persistent currents, we con-
sidered only integrable impurities of this class. The Bethe
ansatz solution of the Kondo problem [2,3] also belongs to
this class: There Kondo impurities produce only scattering
phases, but not reflections. The side-coupled impurity (cf.
Fig. 2a) has, naturally, the properties of a reflector, and,
therefore, cannot be introduced into the Bethe ansatz solv-
able ring in principle, because it violates the Yang-Baxter
relations. This is why, the claim that the side-coupled im-
purity could be introduced into the Bethe ansatz-solvable
ring is incorrect.

In our study we use the nested Bethe ansatz ap-
proach (see, e.g., [29]). The number of operators in the
monodromy is given by the number of sites plus im-
purity [9]. In this approach one can start from the R-
matrix [29], which depends on the spectral parameter u.
These R-matrices satisfy the standard Yang-Baxter rela-
tions R12(u)R13(u + v)R23(v) = R23(v)R13(u + v)R12(u).
One can introduce usual L-operators for each site of the
inhomogeneous lattice [29]. L-operators (including that
of the impurity) also satisfy the Yang-Baxter relations
R12(u1 − u2)L1(u1)L2(u2) = L2(u2)L1(u1)R12(u1 − u2)
(here the index j denotes the quantum space pertaining
to the Hilbert space of the j-th site of the chain and
the uj, j = 1, ..., L, are the rapidities of the inhomoge-
neous lattice). Rapidities parametrize all eigenstates of the
Schrödinger equation. The monodromies of the inhomoge-
neous chain for periodic boundary conditions L̂PBC satisfy
the Yang-Baxter relation. The transfer matrices, defined
as the traces over the auxiliary spaces of monodromies,
mutually commute for different spectral parameters. It
constitutes the exact integrability of the problem.

The first derivative of the logarithm of the transfer
matrix with respect to the spectral parameter is usu-
ally considered as the Hamiltonian. The generic form of
the Hamiltonian of the supersymmetric t−J model with
the impurity has been derived in [9]. The Hamiltonian
consists of two parts, the host Hamiltonian, Hhost, and

the impurity Hamiltonian, Himp. The host Hamiltonian
is Hhost =

∑
j Hj,j+1, where

Hj,j+1 = −
∑

σ

P(c†j,σcj+1,σ + c†j+1,σcj,σ)P

+ c†j,↓cj,↑c
†
j+1,↑cj+1,↓ + c†j,↑cj,↓c

†
j+1,↓cj+1,↑

− nj,↑nj+1,↓ − nj,↓nj+1,↑ , (1)

cj,σ, c†j,σ destroy or create an electron at the site j with
spin σ, nj,σ = c†j,σcj,σ is the number operator of electrons
with the spin σ at the site j and P = (1 − nj,−σ)(1 −
nj+1,−σ) is the projection operator which excludes dou-
ble occupation of each site. The first term determines the
hopping between the neighboring sites (with the hopping
matrix element equal to 1), while the other terms define
the exchange interaction between electrons at neighboring
sites with the exchange constant equal to 2. The impu-
rity’s part of the Hamiltonian (for the impurity situated
between sites m and m + 1) is

Himp =
(M, σ|M + σ)
θ2 + (S + 1

2 )2

(
Hm,imp + Himp,m+1

− 2S(S − 1)Hm,m+1 + {Hm,imp,Himp,m+1}

+ iθ[Hm,imp,Himp,m+1]
)

, (2)

where {., .} ([., .]) denote anticommutator (commutator)
and (M, σ|M +σ) denotes the Clebsch-Gordan coefficient
(1
2σ, S′M |12S′SM +σ) with S = S′+ 1

2 . An integrable im-
purity embedded in a host lattice is located on a link of the
chain and interacts with electrons on both sites joined by
the link (cf. Figs. 2b and c). All the coupling constants of
the impurity Hamiltonian depend on two parameters: S,
determining the spin of the impurity, and the off-resonance
shift θ (here we limit ourselves with real θ), determining
the impurity-host coupling even for S = 1

2 . From equa-
tion (2) it is clear, that an impurity of spin S = 1

2 and
θ = 0 is the adding of one more site to the host. On the
other hand, the case θ → ∞ defines the magnetic impu-
rity, totally decoupled from the host ring. The three-site
terms of the impurity Hamiltonian violate the T and P
symmetries separately, while their product PT is of course
invariant [9]. Namely the violation of these symmetries by
the Bethe ansatz-solvable magnetic impurity is the reason
for possible renormalizations of the initial phase shifts of
topological persistent currents in the ring. These terms are
total time derivatives in the classical sense and are only
important in quantum mechanical aspects [9]. Although
the reflection amplitude is zero as a consequence of the in-
tegrability, the impurity interacts with both partial waves
(forward and backward moving electrons). The three-site
terms can be avoided [9] by placing the impurity site at
the open end of the host chain, cf. Figure 2d. This con-
siderably simplifies the impurity Hamiltonian, since one
of the neighboring host sites is absent. However, in such a
case persistent currents are zero, because external electro-
magnetic fluxes can be totally removed from the model
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with the help of a gauge transformation (open chain). We
propose to check our results experimentally. It seems that
the experimental realization of the geometry of our Hamil-
tonian (Fig. 2b) is not more difficult than the one of Fig-
ure 2a, when producing quantum dots in quantum rings.
The advantage of such a fabrication will be the possibility
to compare experimental data with rigorous theoretical
results.

The derivation of the Bethe equations is standard and
we present it in the Appendix. We point out that we
introduce the external magnetic flux Φ and electric flux
F [19] (F = 4πτ is the electric flux generated by a string
passing through the center of the ring with linear charge
density τ , F0 = hc/µB is the unit electric flux, µB is
the Bohr magneton) as usual Peierls factors, which are
transformed [21] into twisted boundary conditions. The
fluxes give rise to charge and spin persistent currents of
the Aharonov-Bohm-Casher type in a closed ring configu-
ration. Quantum numbers (rapidities), which parametrize
all eigenvalues and eigenfunctions of the Schrödinger equa-
tion are determined from the Bethe equations. For twisted
boundary conditions our Hamiltonian is diagonalized by
the solution of the following Bethe equations

vj − θ + i(2S′ + 1)/2
vj − θ − i(2S′ + 1)/2

[
vj + i/2
vj − i/2

]L

e−i2π
(

Φ
Φ0

+ F
F0

)
=

M∏
α=1

vj − Λα + i/2
vj − Λα − i/2

, j = 1, ..., N ,

Λα − θ + iS′

Λα − θ − iS′

N∏
j=1

Λα − vj + i/2
Λα − vj − i/2

e−i2π 2F
F0 =

−
M∏

β=1

Λα − Λβ + i
Λα − Λβ − i

, α = 1, ..., M , (3)

where M is the number of down-spin electrons and N
is the total number of electrons in the chain. The eigen-
functions and eigenvalues of the total Hamiltonian are
parametrized by the charge rapidities vj , j = 1, ...N , and
the spin rapidities, Λα, α = 1, ...M . The energy of the
system is given by

E = 2
N∑

j=1

1 − 4v2
j

1 + 4v2
j

· (4)

The ground state of the one-dimensional correlated
electron system is characterized by N−2M unbound elec-
tron states (with real charge rapidities vj) and M singlet
Cooper-like pairs (bound states of electrons with zero total
spin) for which the charge rapidities are complex conju-
gated pairs [24]. The Bethe equations for the ground state
can be re-written in terms of real rapidities vj (unbound
electrons, carrying a spin 1

2 and charge −e) and rapidi-
ties Λα, now characterizing the singlet Cooper-pair-like
bound states, which carry zero spin and charge −2e. Tak-
ing the logarithm of the transformed Bethe equations we

get

Θ [Λα, 1] +
1
L

Θ

[
Λα − θ,

(
S +

1
2

)]
=

2π

L

(
Jα +

2Φ

Φ0

)

+
1
L

N−2M∑
j=1

Θ [Λα − vj , 1/2] +
1
L

M∑
β=1

Θ [Λα − Λβ, 1] ,

Θ [vj , 1/2] +
1
L

Θ [vj − θ, S] =

2π

L

(
Ij +

Φ

Φ0
+

F

F0

)
+

1
L

M∑
α=1

Θ [vj − Λα, 1/2] , (5)

where j = 1, ..., N − 2M , α = 1, ..., M , Θ[v, x] =
2 tan−1(xv), and the quantum numbers Ij and Jα appear
because the logarithm is a multivalued function. The en-
ergy is given by

E = 2
N−2M∑

j=1

1 − 4v2
j

1 + 4v2
j

− 2
M∑

α=1

(Λ2
α + 1)−1 . (6)

The quantum numbers completely determine the Bethe
solutions of the ground state and the elementary ex-
citations. For the ground state they are symmetrically
distributed with respect to zero. The structure of equa-
tions (5) is equivalent to the one of the structure of
equations (2, 3) of [13] for the metallic ring with the
Anderson impurity, taken in the limit U → ∞. The dif-
ference appears to be due to the additional parameter
for the latter, the resonance level width, which is taken
to be unity in the present model. Equations (3, 5) are
periodic in F with the period F0 and in Φ with the
periods Φ0 and Φ0/2. Hence, they remain invariant un-
der the replacements (F/F0) → {{F/F0}}, (Φ/Φ0) →
{{Φ/Φ0}} and (2Φ/Φ0) → {{2Φ/Φ0}}, where {{x}} de-
notes the fractional part of x to the nearest (half)integer
(i.e. to the nearest Ij and Jα). Spin and charge rapidi-
ties parametrize each eigenvalue and eigenfunction of the
Schrödinger equation, and, therefore, all characteristics of
the model reveal those periodicities also.

Then we can use the fact that the ground state en-
ergy of a one-dimensional metallic system (i.e. the system
which has gapless low-lying excitations: The supersym-
metric t−J model belongs to this class [24]) can be pre-
sented as the series:

E0

L
= E∞ +

E1

L
+

E′

L lnL
+ · · · + E2

L2
+

E′′

L2 ln L
+ . . . (7)

where E∞ determines thermodynamic properties of the
host, E1 and E′ describe the thermodynamic behavior of
an impurity (or edges of an open chain), E2 and E′′ de-
scribe the behavior of excitations, etc. Notice that loga-
rithmic corrections of order of (L ln L)−1, (L2 ln L)−1 etc.
exist for systems with the SU(2) spin symmetry. We shall
discuss some of those corrections below.

In the thermodynamic limit, i.e. L, N, M → ∞ with
N/L, M/L fixed, the Bethe equations for the densities of
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the charge and spin rapidities are

Θ′ [v, 1/2] +
1
L

X(v) =∫
dΛΘ′ [v − Λ, 1/2]σ(Λ) + 2π[ρ(v) + ρh(v)] ,

Θ′ [Λ, η] +
1
L

Y (Λ) =
∫

dvΘ′ [Λ − v, 1/2] ρ(v)

+
∫

dzΘ′ [Λ − z, 1]σ(z) + 2π[σ(Λ) + σh(Λ)] , (8)

where ρ(v), ρh(v) are distribution functions (densities) for
“quasiparticles” and “quasiholes” of unbound electron ex-
citations, respectively, σ(Λ) and σh(Λ) are the densities
for bound states, the prime denotes derivative with re-
spect to the first argument, and X(v) = Θ′[v − θ, S],
Y (Λ) = Θ′ [Λ − θ, (S + 1

2 )
]
. The internal energy of the

system in the thermodynamic limit is

E∞ +
E1

L
= 2

∫
ρ(v)

[
1 − 4v2

j

1 + 4v2
j

]
dv − 2

∫
σ(Λ)

Λ2 + 1
dΛ. (9)

We can also consider the set of integral equations for the
“dressed” (by the interaction) energies of the same low-
lying excitations, i.e.

Θ′ [v, 1/2]− µ − H

2
=

1
2π

∫
dΛΘ′ [v − Λ, 1/2]Ψ(Λ) + ε(v) ,

Θ′ [Λ, 1] − 2µ =
1
2π

∫
dvΘ′ [Λ − v, 1/2] ε(v)

+
1
2π

∫
dzΘ′ [Λ − z, 1]Ψ(z) + Ψ(Λ) , (10)

where ε(v) is the “dressed” energy of unbound electron
excitations, while Ψ(Λ) is the “dressed” energy of singlet
pairs, H is the external magnetic field and µ is the chem-
ical potential. The driving terms in equations (8), i.e. the
terms that do not explicitly depend on ρ and σ, are either
of order 1 or of order 1/L. The terms of order 1 deter-
mine the behavior of the host, while the ones of order 1/L
drive the impurity. Equations (8) are linear integral equa-
tions, such that we may write ρ = ρhost + (1/L)ρimp and
σ = σhost + (1/L)σimp, etc., and obtain separate integral
equations for the rapidity densities for the host and the
impurity. The parameter exp(−π|θ|) plays the role of the
Kondo temperature, TK , in this model.

3 Features of persistent currents

One can clearly see that equations (8, 9, 10) do not depend
on Φ and F explicitly [30]. It respects the fact that neither
E∞, nor E1 and E′ depend on external electro-magnetic
fluxes and the Aharonov-Bohm-Casher quantum topologi-
cal effects reveal themselves in the (highest) corrections of

order of L−2 etc. The calculations of those corrections can
be performed in the framework of the method, developed
in [31], based on the use of the Euler-MacLaurin formula.
The finite-size (mesoscopic) correction to the energy, E2,
is determined from the formula

E2 = −π

6
(vρ + vσ) + 2πvρ(∆+

ρ + ∆−
ρ ) + 2πvσ(∆+

σ + ∆−
σ ) ,

(11)
where the Fermi velocities for low-lying excitations are,
respectively,

vρ =
∂ε

∂v
(2πρ)−1|v=v0 , vσ =

∂Ψ

∂Λ
(2πσ)−1|Λ=Λ0 , (12)

where v0 is the Fermi point for unbound electron states,
defined by ε(±v0) = 0, and Λ0 is the Fermi point for
spin-singlet pairs, defined by Ψ(±Λ0) = 0. The conformal
dimensions ∆±

i of primary operators are (cf. [32] for the
homogeneous supersymmetric t−J model without external
fluxes)

2∆±
i = 2n±

i +
[
zρ,i(∆Nσ − δσ) − zσ,i(∆Nρ − δρ)

detẑ

± [zT
i,σ(∆Dσ + {{2Φ/Φ0}} − dσ)

+ zT
i,ρ(∆Dρ + {{Φ/Φ0}} + {{F/F0}} − dρ)]

]2

, (13)

where i = ρ, σ and n±
i are the numbers of particle-hole

excitations at the right and left Fermi points of each of
the Dirac seas. Here integers/half-integers ∆Ni denote the
changes in the numbers of quasiparticles in the Dirac seas
and integers/half-integers ∆Di represent the numbers of
backscattering excitations (particle transfer from the left
to the right Fermi points). Both of them are related to the
maximal and minimal values of the quantum numbers Ij

and Jα.
The dressed charge matrix ẑ = ξ̂|v=v0,Λ=Λ0 measures

correlations between the bands. The elements of ξ̂ satisfy
the equations

1 =
1
2π

∫
dΛΘ′ [v − Λ, 1/2] ξρ,σ(Λ) + ξρ,ρ ,

0 =
1
2π

∫
dΛΘ′ [v − Λ, 1/2] ξσ,σ(Λ) + ξσ,ρ ,

1 =
1
2π

∫
dvΘ′ [Λ − v, 1/2] ξσ,ρ

+
1
2π

∫
dzΘ′ [Λ − z, 1] ξσ,σ(z) + ξσ,σ(Λ) ,

0 =
1
2π

∫
dvΘ′ [Λ − v, 1/2] ξρ,ρ

+
1
2π

∫
dzΘ′ [Λ − z, 1] ξρ,σ(z) + ξρ,σ(Λ) . (14)

The quantities δi and di renormalize ∆Ni and ∆Di

because of the impurity (and free edges of an open chain).
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In the case of twisted boundary conditions external topo-
logical fluxes through the ring also contribute to these
quantities. The impurity contributions are related to the
valence and magnetization of the impurity via the Friedel’s
sum rule [9]. Obviously, neither Fermi velocities, nor the
matrix of dressed charges depend on the boundary con-
ditions. The impurity’s contributions δi and di are deter-
mined as follows

δρ =
∫ v0

−v0

dvρimp
h (v) , δσ =

∫ Λ0

−Λ0

dΛσimp
h (Λ) ,

dρ = −1
2

(∫ ∞

v0

dvρimp
h −

∫ −v0

−∞
dvρimp

h

)

+
1
4π

[xρ(∞) + xρ(−∞)] ,

dσ = −1
2

(∫ ∞

Λ0

dΛσimp
h −

∫ −Λ0

−∞
dΛσimp

h

)

+
1
4π

[xσ(∞) + xσ(−∞)] , (15)

where

xσ(Λ) =
∫ v0

−v0

dvΘ [Λ − v, 1/2]ρimp
h (v)

+ Θ

[
Λ − θ, (S +

1
2
)
]

+
∫ Λ0

−Λ0

dzΘ′ [Λ − z, 1]σimp
h (z) ,

xρ(v) = Θ [v − θ, S]

+
∫ Λ0

−Λ0

dΛΘ [v − Λ, 1/2]σimp
h (Λ) (16)

for twisted (periodic) boundary conditions. (Notice that
the terms with di were missed in one of papers of [9] and
in [13].) We point out that di and δi are determined modulo
1, as other phase shifts ∆Ni, ∆Di and n±

i .
In the ground state the persistent charge current is

jc = −L∂E0/∂Φ and the spin persistent current is js =
−L∂E0/∂F . From the above obtained finite size correc-
tions we see that the spin persistent current reveals oscil-
lations, caused by the external electric flux F , with the
period of oscillations F0. The charge persistent current in
general situation manifests the interference of oscillations
caused by the external magnetic flux Φ with two periods:
Φ0 and Φ0/2, cf. [13]. The oscillations of persistent cur-
rents have the “saw-tooth” like form, which is usual for
any system with a large number of particles in it.

Neither Fermi velocities of low-lying excitations, vi,
nor “dressed charge” matrix (which determine magnitudes
of persistent currents) explicitly depend on the parameters
of the magnetic impurity, S and θ. It is in a drastic con-
trast to the valence, magnetic susceptibility and specific
heat of the impurity, or transport characteristics, like the
resistivity or magnetoresistivity. Only initial shifts of per-
sistent currents are determined by these parameters in the
main (∼ L−2) effect. (Generally speaking, persistent cur-
rents depend on the hybridization of the impurity to the

host, which is put equal to 1 in the present model.) Initial
phases of oscillations of persistent currents also depend
on the parity of the number of electrons N and down-spin
electrons M mod (4) via ∆Dρ,σ (cf. [12–16]). The nonzero
θ determines the nonzero ground state momentum of the
system (due to topological charge and spin currents, i.e.
three-site terms, caused by the integrable impurity), which
is nothing else than the nonzero charge and spin chiral-
ity (or Noether’s topological currents). Hence, the mag-
netic integrable impurity does cause the initial phase shift
of persistent currents for the lattice electron model. This
points out that the regularization scheme of [25] for the
continuum (scaling) limit is more close to the situation
with the impurity on the lattice from the viewpoint of
finite-size corrections, and a generic integrable impurity
in a closed ring has to manifest initial phase shifts in the
behaviors of charge and spin persistent currents.

The structure of Φ- and F -dependent terms for our
lattice model with the magnetic impurity is similar to
the ones of continuum models [12–16] (cf. especially [13],
where persistent currents were studied for the Anderson
impurity model). Hence, the division into left- and right
movers (present in [12–16]) is not essential for the be-
havior of the oscillations of charge and spin persistent
currents in an exactly solvable ring with an impurity, in
spite of [17,18]. Notice that when comparing our model
with the Anderson impurity model, one has to take the
limit U → ∞ in the latter (which is rather standard for
the Kondo case [3,4]). Our answer, equation (11), is ob-
tained in the conformal limit, where dispersion laws of
low-lying gapless excitations are linearized about their
Fermi points (±v0 and ±Λ0). However, that lineariza-
tion was performed after we found the structure of the
ground state (i.e. the Fermi seas for true low-lying exci-
tations), but not before, as was done for the continuum
models [12–15]. This constitutes the important difference:
There exist two Fermi velocities for low-lying excitations
in the lattice model, while for the continuum models only
one velocity exists for both types of low-lying excitations
(it is equal to the Fermi velocity of noninteracting elec-
trons). The onset of two Fermi velocities is the “trade-
mark” of the Luttinger liquid.

The next order corrections (of order of (L2 ln L)−1,
etc.) produce the impurity’s contribution to the mag-
nitude of the persistent current (cf. [17]). However, for
the generic situation of long enough systems those con-
tributions can be neglected when comparing with the
main effect of order of L−2. Moreover, any, even very
small, magnetic anisotropy will remove logarithmic correc-
tions. Probably the effect of the Kondo “screening cloud”
ξK ∼ �vF /TK can be manifested for small enough sys-
tems (where ξK ∼ L at least). However at such conditions
the Abrikosov-Suhl (Kondo) resonance is shifted from the
Fermi point and the impurity rather reveals the mixed-
valence properties. Actually this limit (ξK ≥ L) has no
other, standard for the Kondo situation, features. For ex-
ample, it is well known that the generic Kondo effect (at
ξK � L) affects the Sommerfeld coefficient of the low-T
specific heat and magnetic susceptibility of the magnetic
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impurity: They become large (actually, they are inverse
proportional to the small TK) [2–4,22]. However, for the
case ξK ≥ L the specific heat and magnetic susceptibility
are exponentially small at low T [34]. Similar conclusions
(i.e. that for ξK ≥ L the specific heat and magnetic sus-
ceptibility are exponentially small at low T ) can be ob-
tained also for the supersymmetric t−J model with the
integrable magnetic impurity. Results for this model for
small finite L, N and M are reported elsewhere [35].

For the half-filling (where the valence of the impurity
is 1, reminiscent to the standard Kondo situation [3,4])
for H = 0 the magnitudes of oscillations of persistent cur-
rents with the periods Φ0 and Φ0/2 become equal to each
other, as well as the initial phases of those oscillations.
Hence, in this case the charge persistent current must
reveal only one period of oscillations (Φ0). However, for
any nonzero H and non-half filled case the magnitudes
of oscillations with periods Φ0 and Φ0/2 become different
from each other and the interference of those two peri-
odic functions has to manifest itself in the ground state.
It turns out that as for any 1D system with the SU(2)
symmetry present, small deviations of H from zero pro-
duce logarithmic corrections related to marginal correc-
tions in the renormalization group sense. Oscillations of
charge and spin persistent currents are maximal in the
ground state, their main effect is of order of L−2. How-
ever, for T �= 0 persistent currents become exponentially
small with L [21]. The “saw-tooth”-like form of oscillations
is related to only the ground state. Any nonzero temper-
ature T > �vF /L strongly reduces the magnitudes of the
most of harmonics, and sinusoidal-like oscillations result.

The magnetoresistivity of the considered model for
S = 1

2 in the ground state was calculated in [9] (without
external fluxes, but their role is transparent: They shift
the phases, which determine the resistivity). At low T the
lowest thermal corrections to the resistivity for S = 1

2

are proportional to T 2, as usual for Fermi liquids. On the
other hand, for quantum dots the resonant Kondo trans-
parency (tunneling) in the ground state was first calcu-
lated in [36,37] for a simple metal as a host. Actually we
can use the result [36,37] G =

∑
σ G0 sin2 δσ with the

phase shifts of the electrons δσ determined from the val-
ues of δi via the Friedel sum rule, see [9]. Notice that
G0 can depend on Φ and F as a harmonic function of
Φ/Φ0 and F/F0, because it is determined by the matrix
elements, which connect the dot to the ring and the de-
pendence of the topological fluxes can be transfered to
those elements with the help of the gauge transformation.
We emphasize that unlike charge persistent currents, the
characteristics of transport currents do depend on the pa-
rameters of the magnetic impurity. It is the direct conse-
quence of the difference in definitions of those two types of
currents. The Abrikosov-Suhl (Kondo) resonance (which
is determined by the spin low-lying excitations) strongly
affects the transmition amplitude (and, hence, the resis-
tivity) of the chain, but it does not affect the total orbital
moment of the ring (i.e. the charge persistent current).
The temperature dependence of characteristics of trans-

port currents of the considered model reveals the usual
Kondo crossover at TK .

4 Summary

In conclusion, in this paper we have studied the behavior
of charge and spin persistent currents in an integrable lat-
tice ring of strongly correlated electrons with a magnetic
impurity. Our results manifest that oscillations of charge
and spin persistent currents are similar to the ones, earlier
obtained for integrable continuum models with a magnetic
impurity. The form of oscillations in the ground state is
“saw-tooth”-like, generic for any multi-particle coherent
one-dimensional models. For very small sizes of quantum
rings those ground state “saw-tooth” oscillations can be
replaced by harmonic ones, however, the generic Kondo
effect is absent for such small rings in which the size of
the ring becomes comparable with the size of the Kondo
“screening cloud” ξK . The magnitude of oscillations is de-
termined by two Fermi velocities of low-lying spin and
charge excitations and by the matrix of “dressed charges”,
which reveal the interaction between electrons in the
system. We have shown that the linearization of the dis-
persion law of itinerant electrons does not produce any
qualitative renormalization of the answers for persistent
currents (except of two, instead of one, characteristic
Fermi velocities for low-lying excitations, characteristic for
any interacting one-dimensional electron system). Our re-
sult for charge and spin persistent currents agrees with the
ones for the approximation, which considered only elec-
trons close to the right or left Fermi points, but with two
Fermi velocities, unlike the only one for the continuous
approximation. The integrable magnetic impurity intro-
duces the net charge and spin chiralities in the generic
integrable lattice system. Those chiralities determine ini-
tial phase shifts of charge and spin persistent currents,
and they appeared also in some continuum models. We
propose to check our theoretical results in experiments on
quantum rings with quantum dots in the geometry, sim-
ilar to the integrable impurity situation. We argue that
the advantage of such measurements will be the possibil-
ity to compare the data of experiments with the exact
theoretical results. Finally, some remark is in order. Our
results are generic only for integrable impurities (which, on
the other hand, very well describe thermodynamic and ki-
netic characteristics of magnetic Kondo impurities [2–4]).
However, one can only speculate, whether these results
are generic for the experimental realizations of artificial
magnetic impurities (quantum dots) in quantum rings or
not. If they are not, then this will be the restriction for
the use of Bethe ansatz-solvable models for the descrip-
tion of quantum dots in quantum rings. We expect that
further theoretical and experimental studies of persistent
currents in quantum rings with magnetic impurities will
clarify most of those problems.

Our study was in part supported by the Swedish Foundation
for International Cooperation in Research and Higher Educa-
tion (STINT).
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Appendix

Here we present the proof of the exact integrability of our
model and the derivation of the Bethe equations equa-
tions (3) following the procedure of [38]. We start from
the gl(1|2) invariant R-matrix

Rαγ
βδ (u) = a(u)(−1)p(α)p(γ)δα,βδγ,δ

+ [1 − a(u)]δα,δδγ,β , (A.1)

where α, β, γ, δ = 1, 2, 3, a(u) = u/(u + i), and we choose
the grading, e.g., p(1) = 0, p(2) = p(3) = 1. This
R-matrix satisfies the Yang-Baxter relation. The mon-
odromy matrix L̂PBC(u) forms 3×3 matrix with respect
to the states of the auxiliary particle. For this grading it
is convenient to introduce additional matrix Řαγ

βδ = Rγα
βδ ,

with which the monodromies satisfy the Yang-Baxter re-
lation Ř(u − v)(L̂PBC(u) ⊗s L̂PBC(v)) = (L̂PBC(v) ⊗s

L̂PBC(u))Ř(u − v), where ⊗s denotes the super tensor
product associated with our choice of the grading. The
transfer matrix t(u) is determined as the supertrace of
the monodromy t(u) = strL̂PBC(u) ≡ (−1)p(α)L̂PBC

αα (u).
As we pointed out above, from the Yang-Baxter relations
for the monodromy it follows that [t(u), t(v)] = 0, hence,
t(u) and t(v) have common eigenfunctions, which means
that any functions of the transfer matrix t(u) commute
mutually and with the transfer matrix. This implies the
infinite set of conservation laws, i.e. the exact integrability
of the problem. The Hamiltonian of our problem is defined
as the logarithmic derivative of the above transfer matrix
with respect to the spectral parameter taken at u = 0.

Now our task is to find the eigenfunctions and eigenval-
ues of t(u). We start with the vacuum vector Ω0, chosen so
that L̂PBC

αβ (u)Ω0 = 0 for α > β. The action of the diagonal
matrix elements is considered as L̂PBC

αα (u)Ω0 = aα(u)Ω0,
where α = 1, 2, 3. We can consider any eigenstate in the
form

Ω(v′1, . . . , v
′
N ) =

N∏
k=1

L̂PBC
αkβk

(v′k)Ω0 , αk < βk . (A.2)

Following [38] we can show that the action of the transfer
matrix t(u) = L̂PBC

11 (u) − L̂PBC
22 (u) − L̂PBC

33 (u) onto the
vector equation (A.2) produces the same vector times the
eigenvalue

τ(u) = a1(u)
N∏

j=1

a−1(v′j − u) − a3(u)
M∏

k=1

a−1(Λk − u)

− a2(u)
N∏

j=1

a−1(v′j − u)
M∏

k=1

a−1(u − Λk) , (A.3)

where {Λk}M
k=1 is the additional set of rapidities, [38,29]

and so-called “unwanted terms”. The conditions of the
cancellation of those “unwanted terms” can be written

as [38]

a2(Λk)
a3(Λk)

N∏
j=1

a−1(v′j − Λk) =
M∏
l=1
l �=k

a(Λk − Λl)
a(Λl − Λk)

,

a1(v′j)
a2(v′j)

=
M∏

k=1

a−1(v′j − Λk) , (A.4)

During the derivation of equations (A.3) and (A.4) the
concrete form of a1,2,3(u) was not used, [38] but only the
triangular action of L̂PBC(u) onto the vacuum state and
the c-number form of the action of the diagonal matrix
elements were supposed.

Consider now the representation of the diagonal ma-
trix elements of L̂PBC(u) for our supersymmetric t−J
model with an impurity. Let us consider the unity opera-
tor

∑
j Ij , the operator of the total number of electrons N̂ ,

and three operators of the projections of the total spin of
the system, S±,z, respectively. They form U(1) and SU(2)
subalgebras ([Sz, S±] = ±S±, [S+, S−] = 2Sz) of gl(2|1).
The fermion operators Q±

1,2 satisfy the anticommutation
relations (see, e.g., [39])

{Q±
1 , Q±

2 } = ±S±

2
, {Q±

1 , Q∓
2 } = ±−Sz ± N̂

2
· (A.5)

with other mutual anticommutators being zero. They sat-
isfy the commutation relations with the bosonic generators

[Sz, Q±
l ] = ±Q±

l

2
, [N̂, Q±

l ] = (−1)l+1 Q±
l

2
,

[S∓, Q±
l ] = Q∓

l , [S±, Q±
l ] = 0 , (A.6)

with l = 1, 2. In the basis, where N̂ , S2 and Sz are diag-
onal, the non-vanishing matrix elements of Q±

1,2 are

〈S +
1
2
, S − 1

2
, σ ± 1

2
|Q±

1 |S, S, σ〉 = ±
√

S ∓ σ

2
,

〈S, S, σ|Q±
2 |S +

1
2
, S − 1

2
, σ ∓ 1

2
〉 =

√
S ± σ

2
· (A.7)

Actually these operators are the sums of local opera-
tors of the same structure at each site of the system.
For S = 1

2 one can express these operators in terms
of the standard electron creation and annihilation oper-
ators as N̂ =

∑
j(nj,↑ + nj,↓), 2Sz =

∑
j(nj,↑ − nj,↓),

S∓ =
∑

j c†j,↓,↑cj,↑,↓, Q+
1 =

∑
j(1 − nj,↓)c

†
j,↑, Q+

2 =∑
j(1 − nj,↑)cj,↓, and Q−

1,2 = (Q+
1,2)

+. The multipliers
(1 − nj,σ) of fermionic operators Q exclude double oc-
cupations of each site, as it must be for the t−J model.

Let us construct the local L-operators (at site j) of
the supersymmetric t− J model in the form Lj(u) =
a(u)Îj + [1 − a(u)]Ẑj , where Ẑj

12 = (Q+
2 )j , Ẑj

13 =
(Q−

1 )j , Ẑj
21 = (Q+

1 )j , Ẑj
31 = (Q−

2 )j , Ẑj
23 = S−

j ,
Ẑj

32 = −S+
j , Ẑj

11 = [Ij − (N̂j/2) + Sz
j ][Ij − (N̂j/2) −

Sz
j ], Ẑj

22 = −[Ij − (N̂j/2) − Sz
j ][(N̂j/2) + Sz

j ], and
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Ẑj
33 = −[Ij − (N̂j/2) + Sz

j ][(N̂j/2) − Sz
j ], where Îj is the

unitary 3×3 matrix. The action of the L-operator on the
vacuum state obviously produces c-number diagonal el-
ements and zeros for [Lj ]α,β for all α > β. Then we
construct the monodromy as L̂PBC(u) = T̂LS

imp(u −
θ)L1/2

1 (u) · · ·L1/2
L (u), where for the host sites we choose

S = 1
2 , and T̂ denote the diagonal matrix, which accounts

electro-magnetic fluxes. Naturally, the elements of such
a monodromy acting on the vacuum state produce zero,
L̂PBC

αβ (u)Ω0 = 0 for α > β, while the diagonal matrix el-
ements are c-numbers, which were the only conditions of
the above introduced construction. For this representation
we have a1(u) = 1, a3(u) = exp(iΦ↓)aL(u)aS′(u − θ), and
a2(u) = exp(iΦ↑)aL(u)aS′(u− θ)Z(u− θ), where aS′(x) =
(x + iS′)/[x + i(S′ + 1)] (notice that a(x) ≡ aS′=0(x))and
Z(x) = (x− iS′)/(x+iS′). Naturally, for θ = 0 and S′ = 0
(S = 1

2 ) the impurity site is just an additional host site.
One can see that for this choice of a1,2,3 in equations (A.4)
one obtains equations (3) for vj = v′j − i/2. These equa-
tions and equation (A.3), naturally, coincide (up to a sign)
for Φ↑,↓ = 0 with the Bethe ansatz equations and the equa-
tion for the eigenvalue of the transfer matrix of [9] (e.g.,
for S → S′ with equations (A.1, A.2) of the third reference
of [9], where these equations were obtained in the frame-
work of the grading of the second reference of [29]). The
integrability exists for impurity L-operators with differ-
ent values of θ, so that a finite concentration of impurities
with a distribution of coupling constants can be embed-
ded into an integrable correlated electron host [40] (or a
Heisenberg chain [41]).
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